Jump to content

Crime Scene Investigation And Evidence Collection


Recommended Posts

evidence bag with red evidence sealing tape for crime scene investigation

Metal detectors aren’t just for hunting for gold. They’re also enormously useful tools for law enforcement. And yet, while most police departments have metal detectors on hand for crime scene investigation, far fewer have trained and qualified officers who know how to use them correctly. But when deployed properly, metal detectors can be a game-changer when it comes to effectively investigating a crime scene, uncovering evidence that might otherwise go detected while at the same time preserving a crime scene from disturbance.

The evidence of metal detectors’ effectiveness is conclusive: A study published in Law and Order found that “Automatic Very Low Frequency (VLF) ground canceling metal detectors have proven to be the best all-around choice for ground (land) searches in law enforcement applications.” This was attributed to “their ease of use and sensitivity.”

The use of metal detectors at crime scene investigations goes far back into history. In fact, a metal detector was used to uncover the round that was used in the assassination of President James Garfield.

Safety is another factor when it comes to using metal detectors. To use an obvious example, consider a hypodermic needle in the middle of a pile of leaves. A metal detector can help an officer to discover such evidence without him having to root around in the leaves risking injury — or worse.

When searching for weapons in a house, you can program a metal detector to ensure that it doesn’t read common objects in a wall or a floor. This makes it easier to find objects when they have been hidden with great care by a suspect.

There are tons of reasons for police departments to have metal detectors and use them with vigor. What’s more, it’s probably less expensive and easier to both purchase and train than you probably think.

Use It Or Lose It: Budgeting for a Metal Detector

We spoke to former police officer Dave Bachert. Dave has over 20 years of experience as a police officer, having served in Allentown, Pennsylvania as the Supervisor of the Evidence Unit. While serving in that capacity, he went out and purchased a metal detector for his department. He notes that one of the first things he mentions to police officers with department purchasing power is that their budgets are, more often than not, “use it or lose it.”

This means that the unspent budget will not rollover to the next year. And while many police departments find things to spend budget money on that are arguably frivolous, many don’t have metal detectors. So if there’s money sitting around at the end of the year — or even at the beginning — a metal detector is a wise investment that will not only uncover evidence that might otherwise go unseen but will also speed up the process of combing a crime scene investigation for evidence.

Without Proper Training, Your Metal Detector Is a Paperweight

Part of the reason that many departments don’t buy a metal detector or don’t use it is because they find the equipment to be intimidating. They might even have one, but no one wants to use it because they think it’s going to be too complicated and slow down the process. On the other hand, untrained officers using metal detectors might cease using them because they think that they don’t produce any meaningful results.

But training to properly use a metal detector is not a difficult task and virtually any officer can learn how to use a metal detector properly. Most of the time the reason an untrained officer found no luck using a metal detector was because of some very simple mistake that can easily be corrected. Once learned, it is incredibly easy to use and will only serve to cut the amount of time it takes to investigate a crime scene while at the same time producing far more thorough results.

If the department already has a metal detector, there’s little point in having it if it never leaves the office. After all, think about how much evidence you’re missing out on because officers aren’t bringing it out into the field to aid with their crime scene investigations?

Proper training and knowledge of the equipment are crucial not only to detect and find evidence but also to make sure that the evidence, once found, will hold up in court. A skilled attorney can easily pick apart and discredit evidence found with a metal detector when the officer doesn’t understand the equipment or how it was used. On the other hand, an officer who is highly knowledgeable of and capable with his metal detector can withstand a great deal of scrutiny on the witness stand. This increases the chances of the evidence you find with a metal detector staying in the game when it comes to trial.

Knowing the manual, learning the terminology and basic operation of the metal detector is the bedrock, but it’s not the end of the story by any means. There’s no substitute for practice with a metal detector. That practice doesn’t have to be, and ultimately shouldn’t be, limited to practice in the field. Officers should, for example, take a metal detector to the shooting range. This gives them the opportunity to examine a number of spent shell casings to learn the difference between how a metal detector registers one versus another.

From there, officers can proceed to more complex tasks like finding shell casings and spent round that are underneath three inches of soil. This kind of training shouldn’t be an obstacle to getting the metal detector out in the field. It should simply be there to supplement what the officers are doing during actual crime scene investigations.

Metal Detectors Are Snipers, Not Shotgunners

Some might think that there’s going to be a lot of false positives when using metal detectors for a crime scene investigation, but this is not the case. Dave notes that a metal detector can be set so that it only detects the specific type of metal in the caliber of ammunition that you’re looking for. So, for example, if you know that you’re looking for a steel-cased 9mm round, you can set the metal detector to only report results for that type of metal. What’s more, you can set the bandwidth so that it isn’t reporting common items like gum wrappers that might set off a metal detector.

One common method used when searching for evidence using a metal detector is to very narrowly set the metal detector so that it only returns results for a specific item that you are looking for. Once an area has been swept in this manner, an officer can then go over the same area casting a wider net. This allows for an officer to find specifically what he is looking for before searching the same area to see if there is anything that he missed that he wasn’t looking for.

The gun range allows officers to acquaint themselves with the nuances of a metal detector. For example, what kind of alert does one get from a 9mm as opposed to a .40 or a .44 magnum shell casing? You don’t need a crime scene investigation to do this. All you need are a bunch of empty shell casings.

Field experience, however, will be the gold standard when it comes to learning how to use the metal detector. While basically anyone can be trained to find empty shell casings and spent rounds, there’s a nearly unlimited amount of objects that could be found at a crime scene investigation that could end up being meaningful evidence. Indeed, as many crime scene investigators might attest, sometimes the most unassuming object can be a piece of evidence when the context is understood.

Finding such “odd” objects in a crime scene investigation is more art than science. Officers will just have to learn how to separate the wheat from the chaff through direct personal experience using metal detectors on crime scene investigations.

So what is a metal detector going to pick up at a crime scene that a trained investigator won’t? You’d be surprised. Dave reports finding guns and knives with his that investigators failed to locate on visual inspection of a crime scene. But beyond that, there are, of course, shell casing and even spent round that can be identified. This begins the process of forensic analysis of a crime scene. Once such a shell casing or a spent round is uncovered, laboratory analysis can begin to find out, with shocking specificity, precisely what kind of round it was before it was shot based on where contact with the primer occurs and what kind of rifling left its mark. This is a common method of matching guns to a crime, but it can’t take place if there’s no spent round or shell casing to examine.

A car might not sound like a very difficult object to find, but it would be if it was buried deep down. A metal detector in the hands of a skilled crime scene investigator, however, can detect an automobile as deep as 20 feet below the surface. This will uncover evidence that virtually any crime scene investigator, no matter how experienced, would miss even upon close inspection of an area.

Metal Detectors Help Preserve a Crime Scene Investigation

Metal detectors also reduce the impact on and disturbance of a crime scene. When locating and acquiring evidence from a crime scene, even skilled investigators can find that they unintentionally disturb the area. This is especially common outdoors, where natural terrain must, almost by the very nature of the process, be disturbed while officers are looking for evidence. Metal detectors, however, can significantly reduce or even eliminate the disturbance of crime scenes. Officers don’t have to get down on the ground to poke around for shell casings — they can simply wave the metal detector over the area and it will let them know if the shell casing is there.

It’s not just police officers who can assist with crime scene investigations using metal detectors, either. There are also legions of willing amateurs who are happy to help. Metal detecting clubs offer a ready-made army of amateur investigators who are willing to bring their tools to the search. There is some degree of training involved to ensure that the volunteers know how to not disturb crime scenes. But once you have these amateurs trained, you will be able to exponentially expand your ability to search a crime scene and uncover evidence.

Underwater Crime Scene Investigation and Metal Detectors

Another area where metal detectors can help is with finding evidence underwater. This is a particularly shrewd investment of time and money for coastal police departments. Finding evidence underwater can be a seriously Sisyphian task, often yielding little in the way of results. But with a water-ready metal detector in tow, it can be far easier to unearth useful evidence from a crime scene. Officers must be trained in the proper use of such, as should volunteers. But this training isn’t nearly as time-consuming as one might think. And once the training has been implemented it can be used time and again, paying dividends almost immediately.

One way to explore an underwater crime scene without disturbing either the scene itself or the ecosystem is to deploy the search team, who then simply use little markers known as “pingers” to mark an area in need of further exploration. The area can then be handed over to people who specialize in this sort of excavation.

Underwater metal detectors come in a variety of models, including ones for saltwater, which reduces the number of false positives. Others can be towed behind a boat, removing the need for skilled divers to investigate an area.

Underwater metal detectors need to be specially designed so that they ignore things like saltwater and black sand, which can trigger false positives. But the right metal detector with the right settings in the hands of a law enforcement officer who knows how to use it will uncover objects underwater that likely would otherwise have gone undetected.

Metal Detectors Help Solve Crimes When Other Tools Fail

As amazing as it sounds, this type of physical evidence was once thought of as nothing more than mostly uninteresting useless debris around a crime scene investigation. But now they are much more easily connected with evidence from crime scenes. And while fingerprints are not a magic bullet, they can often be taken from shell casings. There are also serial numbers on all rounds made after the 1968 Gun Control Act, adding another means of tracing and tracking shells found at a crime scene investigation.

How much can a little piece of metal found in a tree tell you about a crime? A heck of a lot, actually. Even a little fragment of a bullet has rifling details on it that begin to paint a picture of what ammunition was used. The caliber of a standard round or the gauge of a shotgun, for example. From here, skilled crime scene investigators can begin to deduce what brand of ammunition was used. This, in turn, begins to form a picture of which specific weapon was used when committing a crime.

A metal detector can find spent rounds in places that even skilled crime scene investigators comb-over for weeks. Oftentimes, these can be found embedded into some kind of wood. But even knowing that, searching for the spent round is a bit like the proverbial needle in a haystack. Keeping with this analogy, however — it’s a lot easier to find a needle in a haystack when you have a metal detector to help you get the job done. What’s more, when a metal detector is used it allows for better preservation of the area where the spent round is found. Thus, two pieces of evidence can be yielded through such methods.

There are rather astonishing real-world cases of forensic analysis matching up a weapon to a spent round or shell casing found at the scene of a crime. A man who was known to Philadelphia police as the Ruthless Robber was a dangerous menace who would rob his victims, then shoot at them after they had handed over their valuables. And without the kind of forensic evidence we’re talking about here, they never would have matched up one of his shell casings to a weapon that was recovered at a totally unrelated traffic stop.

In another case in Phoenix, Cleophus Cooksey Jr. was arrested for a double homicide. Within 48 hours they had him tied to seven other homicides, with police confident that they had caught a budding serial killer before he had a chance to really hit his stride.

Finally, there is the case in Colorado Springs, where a police department was having a bear of a time solving a series of crimes in the area, including a drive-by shooting at a local mall. What police were able to deduce from a large number of shell casings and spent rounds paired with forensic analysis is that several gang members were sharing a single “community gun.” Without a large amount of data to work with, there is no way that these homicides would ever have been solved.

The point here is that the more evidence you can collect, the better. While what you find might not be completely germane to your investigation, it might be helpful in another one. This is especially true if you live in a state where you have access to a statewide database of spent shell casings. And with a metal detector, you are certainly going to uncover more pieces of evidence with less crime scene disturbance than you would without one.

Another example of the role that metal detectors can plan in getting a conviction is the common pastime of joyriders shooting at stop signs. The recovered shells from such incidents might not attract a lot of notice without forensic analysis. However, with forensic analysis, police departments can begin matching the spent rounds and shell casings up to much more serious crimes that are oftentimes totally unrelated.

There are sweeping changes happening with law enforcement thanks to the revolution in forensic analysis. It was, and to a certain extent still is, uncommon for police to be able to solve non-fatal shootings. This is because of the amount of time, energy, and resources that have to go into these cases that oftentimes are better spent on fatal shootings.

Modern forensic analysis, however, makes it much easier to get the information needed to get a conviction from a piece of evidence such as a single shell recovered at the scene of the crime. A metal detector, in the hands of an officer properly trained on how to use it, will help to expand the evidence pool, allowing for greater convictions of all crimes, non-fatal shootings included.

What’s more, the man-hours involved in collecting evidence from a non-fatal shooting is significantly reduced when one has a metal detector on hand. The technology works from both directions to make investigating non-fatal crime scenes much more appealing even to smaller police departments with modest budgets: Better forensic analysis makes it easier to use the evidence provided, incentivizing collection. Better tools, such as metal detectors, make it easier to collect evidence in the first place, making the barrier to going out and collecting evidence lower.

But the important thing to remember with all of this is that there has to be proper training. Training isn’t complicated or arcane — if you made it through the police academy, you can learn how to properly use a metal detector. But the training has to be done right at the beginning to ensure that officers are finding what they are looking for and not becoming frustrated by a series of false positives. Once this training is done and the metal detector comes into common use during crime scene investigation, officers will likely wonder how they ever got by without one in the past.

Crime Scene Investigation and Evidence Collection originally appeared on kellycodetectors.com

  • Like 1
Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Similar Content

    • By WhiteRabbit
      Hello, now here’s an opener that might just get me banned on my first post!
      Bear with me, my intentions are pure :)
      Does anyone know if it would be possible to jam an MD signal? The reason I ask is to combat the evident problem we have in the UK with “nighthawks”, illegal detectorists.
      Over here, any landowner can grant permission for detecting on their land (with caveats, known historic sites are protected by law). What often happens is that such a permission is granted and a detectorist innocently sets about his / her business. Someone less scrupulous spots this person and assumes there may be something important there, so shows up at night with a couple of friends and the landowner awakens to a field / lawn full of holes, then bans metal detecting.
      Historic sites are also looted.
      Just an off the wall question, how tricky would it be to build a device to block this on a piece of land? Anyone any ideas?
    • By ColonelDan
      99% of my detecting is done on central Florida beaches. Since it’s impossible to establish a well stocked test garden at a public beach, I sorta brought the beach home with me and developed my own private beach garden!
       
      I cut slots in two large empty chlorine tablet buckets at various depths as shown from 2 -16 inches. I then filled one with New Smyrna Beach sand and the other with soil...for the few times I land hunt around here.

       
      I embedded numerous examples of ferrous and non ferrous targets into paint stirring sticks. I also have several blank sticks I use for gold and silver jewelry as well as artifacts that I don’t want permanently attached to a stick.

       
      I then insert the target(s) in the slots, each at its desired depth, and start scanning.
       

      This allows me to rapidly change the targets, depth and relative position of each.  I can now test for sensitivity at depth as well as separation of ferrous and non-ferrous targets in a variety of scenarios using actual beach sand where I do my detecting.
       
      If I want to test in wet salt sand, I just soak the bucket sand with authentic sea water that I also brought home from New Smyrna Beach...and the Atlantic Ocean never even missed it.  😉
       
      Works for me.....
    • By Steve Herschbach
      I always have my ears perked up for something new in metal detectors and metal detecting technology. I’m not educated enough to really get deep into the technical side of it, but I have a general layman's knowledge of the subject.

      A couple years ago Carl Moreland, the Engineering Manager for White's Electronics, was interviewed on a radio show. I tripped over a reference to the interview on another forum and checked it out. It is very long, and near the end Carl dropped a bombshell. At least I thought so, but it went unnoticed and uncommented on in the metal detecting online world. I thought about posting it on a forum back then but decided to wait and see what developed. Here is the applicable portion of the interview:

      Relic Roundup Radio Show, January 17, 2012, Interview with Carl Moreland, Engineering Manager, White’s Electronics
      http://en.1000mikes.com/app/archiveEntry.xhtml?archiveEntryId=260469

      Transcript beginning at 50:57 mark:

      Carl Moreland - “I can mention one technology that we’re working on because the patent has already been published… or the application, not the patent hasn't gone through yet. We’re working on something called half sine technology, which has actually been around since the 1960’s in geophysical prospecting applications. This is where instead of transmitting a sinusoidal signal you actually just transmit half of the sine and you can do that at extremely high voltages and high ? rates and so on. It’s technically not pulse induction but it’s not VLF either and it is a time domain method. And with that we can get really good depth and we can even get target id information and do discrimination and so forth.”

      Can you see why I perked up at that? I am still amazed it did not get any notice at the time. Nothing happened for a long time. Then I got this PM from Rick Kempf recently:

      Sent 29 January 2014 - 09:04 AM

      Was looking for info on my new SD 2100 this AM when I sort of fell down a rabbit hole of old forum posts and emerged reading Whites new patent. About the first thing I noticed was that you were cited in "prior art".

      Here's what they cited: http://www.voy.com/76600/7/475.html

      The patent is here: http://www.google.com/patents/US20110316541

      Is this something you knew about? Just wondering.

      Rick Kempf

      I told Rick, yeah, heard about that. It was the patent finally being granted from the application Carl mentions in the interview. It was fun getting a mention in a patent though I think it was just the examiner studying up on the subject and finding my old post helpful in simplifying the subject.

      For a long time the Holy Grail in metal detecting has been something that combines the target identification of an Induction Balance (IB or more commonly known as VLF) detector with depth of a Pulse Induction (PI) detector. There have been many promises and false starts over the years, and that was one reason I kept the radio interview mention quiet the last couple years. Frankly, I had half forgot about it until Rick brought the patent being granted to my attention. Notice the title:

      Hybrid Induction Balance/Pulse Induction Metal Detector

      A new hybrid metal detector combines induction balance and pulse induction technologies. Target signals are generated from a transmitted wave that has both induction balance and pulse current inducing characteristics and uses pertinent sampling of the receive data. Combining the two data sources provides eddy current target identification while excluding ground permeability and remanence obscuration.

      Is it time to sing Hallelujah? Well, there is a big gap in between getting a patent and bringing a detector to market. Many patents get filed and you never even see something directly related to the patent. Maybe it looked good on paper but does not pan out well in reality for numerous reasons. So just because White's was granted this patent does not mean something is around the corner. However, they have been working on it for over two years already obviously. And it has been some time since White's put something new out. I do not count remakes of the MXT etc as new. So I think there is reason to be hopeful we may see something one of these days.

      John Earle is one of the unsung heros in the industry. He had a hand in many of the best products at Compass Electronics before moving over to White's after Compass went under. To this day I have never used a VLF that goes any deeper than my old Compass Gold Scanner Pro. John was one of the brains involved in that, as well as the White's Goldmaster 3, regarded by many as being the pinnacle of the analog development of that model line. I was fortunate to have met John at the factory some years ago. He is listed as the inventor on the new patent. Half sine technology is also mentioned in an earlier patent filed by White's, again with John listed as inventor at http://www.freepatentsonline.com/7649356.pdf

      Looks like serious stuff brewing. Bruce Candy of Minelab makes mention of half sine technology in a patent application at http://patents.com/us-20130154649.html which makes me wonder about the new "Super Gold Detector" he is working on. But it is this most recent patent by White's that seems to put the finest point on it. Maybe the Holy Grail of detecting is soon to be a reality. The fact it is White's certainly gives me more hope than what we have seen in the past.
      Edit May 2015 - see also White's patent for Constant Current Metal Detector
    • By kac
      Found this patent that Whites filed and got a patent on in 2014 on a hybrid IB/PI machine.
      https://patents.google.com/patent/US20110316541A1/en
      Curious if anyone heard anything about this. Maybe Garrett will take it on?
    • By NV-OR-ID-CAL-AU
      I know we have had some great advancements in VLF metal detector's over the recent past, but I am hoping that we can keep some of the older design features that seemed to work well. 
      My favorite new technological features being offered in VLF's are Multi-IQ and single frequencies options, fully programmable settings, waterproof, noise cancel, USB chargers, li-ion batteries, Bluetooth headphones, prospecting & coin/relic options, and lightweight. Really a great job by the inventors of these detectors.
      IMHO I hope we do not lose some of the past designs that worked well, such as the ergonomics of the balanced s rod that would separate in three places for backpacking, the hip mountable brain box, the detectors that would not fall over when put on a little bit of an uneven surface, the 6.5 inch elliptical concentric or double DD coils for great access in rocky areas, the 1/4 inch headphone jack, the spare interchangeable battery pack that takes regular batteries to serve as a back-up for the li-ion battery pack, and higher frequencies options.
      I would like to see what else had worked well with other detector user, seems like we are always buying aftermarket parts to retain some of these older features where possible. 
    • By schoolofhardNox
      Not sure where this belongs on the forum, (or if it even belongs here), but this seemed to be the best category to discuss this. Ever since information on the GPX 6000 started to trickle out, I had this nagging feeling something in detecting has changed for those of us who like the thrill of getting to know a new detector. I never would have envisioned the GPX line morphing into a simplified detector. After having the GPX 5000 for a bunch of years now, and using it for relic and beach hunting, I could not imagine relying on a machine that adjust everything for you. I get it that money talks, and when you are a publicly traded company, you go for profit first, and then deny it 😄 And now that there market has switched to an area that probably has very little experience with detectors, the GPX 5000 must have been daunting for them.  So they cater to that market. But I was hoping that a new GPX would fix some of the issues that the 5000 had. I was naive. Minelab has never kept the good parts of their previous machines and just added the the things that needed improvements. On the E trac, the best part of it was the depth it had in finding deep silver,  in long tones, multi. Also the bouncy numbers helped ID deep Indians. When the CTX came out, it lost some of that fluety tone and they tried to straighten out the numbers to a number 12 line. So a two dimensional screen that worked well was transformed into a 2 dimensional screen that bunched most targets on one line. The The EQ comes out and squashes out the numbers even further. So why I thought the 6000 would not do the same is beyond me. I guess I'm disappointing that the "trend" is to make machines where the manufacturer decides on how your machine is going to be set. I hope someone in my area gets a 6000 and is willing to bring it to the beach to compare settings on deep silver. If it wins, then I will eat my words. I know I will get some slack with people saying it's a gold machine, not a relic or beach machine, but to them I would say.... you should be worried when a company controls your ability to fine tune your machine. Thoughts?
×
×
  • Create New...