Jump to content
goldbrick

GB Numbers = Mineralization?

Recommended Posts

I often see posts on various forums where people use high GB phase numbers as examples of hot, mineralized ground. I thought that GB phase numbers are only indicative of the TYPE of ground(rock,soil,clay,salt). Rock, soil, and clay can actually be pretty benign or very mineralized. Isn't the determining factor for hot ground that affects metal detectors  the amount of Fe3 in the soil? A phase reading of 89 may be mild soil if the amount of IRON in the soil is low. Conversely a phase reading of 65 may be very hot ground if the ground consists of clays with high iron content. Some VLF detectors now have Fe3 meters on them and the higher the reading is on that meter the more the ground will affect your detection depth and the accuracy of the VDI number(if supplied).

It seems like many people are confused by this. I think it is important info that can affect your coil selection(size and type), the amount of discrimination you may choose to use, and the mode(all-metal or discriminate) that we run in.

We need somebody that knows their stuff to give us a definitive answer!

Share this post


Link to post
Share on other sites

I would say you have it spot on Merton.

It is a common misperception that the ground balance (ground phase) setting on a metal detector tells you how bad the ground is. It is only vaguely related to that. The ground balance setting is determined by the type of ground mineralization you are dealing with, but it does not directly report the amount of ground mineralization or magnetic susceptibility. In other words, you may be setting the ground balance to reject magnetite, the most common iron mineral in a lot of locations. What you do not know is whether you are tuning out a lot of magnetite or a little magnetite. Several Dave Johnson detectors like the White's GMT and the Fisher F75 and Gold Bug Pro plus Teknetics T2/G2 have Fe3O4 amount readings to complement the ground balance reading. It is this combination of the TYPE (ground phase) of ground mineral as indicated by the ground balance number and the AMOUNT (magnetic susceptibility) of ground mineral as indicated by the Fe3O4 meter that matters. Now for the technical details to back that up.

From the Gold Bug Pro manual:

Understanding ground conditions assists the user in setting up the machine, knowing when to readjust ground balance, and in understanding the responses of the machine while searching.

This detector displays two kinds of ground data:

1. The type of mineralization (which affects where the ground phase should be set). This is GND PHASE

2. The amount of mineralization (the greater the amount of mineralization, the greater the loss of detection depth & ID accuracy; this loss is more pronounced in Discrimination Mode). This is Fe3O4.

The goal of ground balancing is to equate the GND BAL number to the PHASE number. PHASE is the measurement of the ground. GND BAL is the detector’s internal setting which calibrates the detector to the ground’s phase. Notice that the GND BAL number is three digits, with a decimal point. PHASE has only two digits. GND BAL is a higher resolution number, so may differ a bit from PHASE in a perfectly balanced scenario. After pumping and releasing GG, the exact measurement of the ground will be transferred to the GND BAL setting. The two-digit PHASE number displayed on the screen indicates the type of ground mineralization.

Some typical ground mineralization types are:

0 – 10 Wet salt and alkali
5 – 25 Metallic iron. Very few soils in this range. You are probably over metal.
26–39 Very few soils in this range -- occasionally some saltwater beaches
40–75 Red, yellow and brown iron-bearing clay minerals
75–95 Magnetite and other black iron minerals

Fe3O4 BARGRAPH

The Fe3O4 7-segment bargraph indicates the amount of ground mineralization, independent of type, expressed as an equivalent volume concentration of magnetite (Fe3O4). It updates every second. It is sensitive to motion and will give the most accurate readings if you pump the searchcoil up and down several times over the ground. The presence of metal or “hot rocks” will cause the readings to be inaccurate. If you stop moving the searchcoil, the bargraph will go blank.

INDICATION RELATIVE % Fe3O4 SUSCEPTIBILITY MINERALIZATION

7 Bars -------- High over 1 over 2500
2 to 6 Bars -- Medium .026 - 1.0 61 - 2,500
1 Bar --------- Very Low 0.006 - .025 15 - 60
none -- less than .006 less than 15

Magnetic susceptibility is expressed in micro-cgs units. In a salt water environment in the absence of iron minerals, the bargraph indicates relative electrical conductivity. In soils with greater than 10,000 micro-cgs units magnetic susceptibility, the signal from the soil may saturate, or overload, the circuitry. This will not harm the detector but the machine will not be usable in that condition. The solution is to hold the searchcoil several inches above the soil surface so it is not “seeing as much dirt.” By listening and watching you will know how high you need to hold the searchcoil in order to avoid overload. The highest magnetic susceptibilities are usually found in soils developed over igneous rocks, in alluvial black sand streaks on beaches, and in red clay soils of humid climates. The lowest magnetic susceptibilities are usually found in white beach sands of tropical and subtropical regions, and soils developed over limestone.

The Fisher F75 and Teknetics T2 have a better defined Fe3O4 meter as explained in the T2 manual:

BAR GRAPHS Fe3O4 (magnetite)

This bar graph displays the magnetic mineralization factor, or magnetic susceptibility, of the soil. Magnetic susceptibility is expressed in terms of the percent volume of the iron mineral magnetite, which most black sand is made of. The depth to which objects can be accurately identified is strongly influenced by the magnetic susceptibility of the soil. High Fe3O4 values have a greater effect on detection depth in the Discrimination mode than in the All Metal mode. For the most accurate Fe3O4 reading, pump the searchcoil as though you were ground canceling.

Fe3O4 approx. Range micro-cgs Description

3 --- 7,500 --- uncommon but not rare, heavy mineralization
1 --- 2,500 --- heavy mineralization, not uncommon in goldfields
0.3 --- 750 --- heavy mineralization, but not uncommon in some regions
0.1 --- 250 --- medium mineralization, typical
0.03 --- 75 --- light mineralization, but common
0.01 --- 25 --- light mineralization, often low G.C. setting
blank <14 --- quartz & coral white beach sands

From Bruce Candy at https://www.detectorprospector.com/files/file/52-metal-detector-basics-and-theory/

Advanced Nugget Hunting With the Fisher Gold Bug Metal Detector by Pieter Heydelaar & David Johnson. Part 2 of this book is titled The Effects Of Ground Minerals, Native Metals and Man-made Metals on the Fisher Gold Bug starting on page 29 https://www.detectorprospector.com/files/file/55-advanced-nugget-hunting-with-the-fisher-gold-bug-metal-detector/

Predicting Soil Influence on the Performance of Metal Detectors: Magnetic Properties of Tropical Soils http://www.jmu.edu/cisr/journal/13.1/rd/igel/igel.shtml

Influence of Soil Properties on the Performance of Metal Detectors and GPR http://www.jmu.edu/cisr/journal/17.1/RD/takahashi.shtml

Magnetic Properties of Rocks and Minerals http://wellog.com/RF003p0189.pdf

Workshop On Soil Magnetism http://www.gichd.org/fileadmin/pdf/LIMA/SoilMagn_Proceedings2008.pdf

magnetic-susceptibility-rock-types.jpg

  • Like 8

Share this post


Link to post
Share on other sites

Can I throw a curveball into this discussion?

I get the black sand (magnetite) issues but my closest goldfield is covered in volcanic material which includes a mineral called specular hematite.

This stuff drove my local geologist's crazy trying to work out what it was and it took a full spectrum analysis to nail it down.

It is 96% FeO2 with the remaining 4% made up of rare earth minerals, the "unobtainium's"

It drives PI machines nut's, mono coils cannot be used and DD's need to be dumbed down to near useless levels to be usable.

The last thing that makes detecting very difficult is that this stuff does not stick to a magnet which means every targets needs to dug and sifted to find the target. Pieces the size of match heads sound off like nails so they need to be dug

Photo below of some bits that I have dug

IMG_0983_zpsqslypfqv.jpg

 

 

  • Like 1

Share this post


Link to post
Share on other sites

Thanks for the great answer Steve. I hope this thread dispels the fog surrounding this murky subject.

Share this post


Link to post
Share on other sites

Great answer Steve which has illuminated some new thinking for me and given me a new focus while I'm riding out the frozen conditions here. As always, I'll be revisiting my manual again as it perpetually seems like I'm missing something, missing things I need to understand better to refine my detecting. You sure know your stuff!

Peteren, thanks for the write-up on hematite as it sure is obnoxious stuff and being non-magnetic, as you say, it's a stinker to get out of the way. Magnetics are fairly easy to deal with by using a super-magnet, but hematite has to be removed the hard way, so I understand why it's driving you crazy. 

Goldbrick, great question, thanks for posting it.

All the best,

Lanny

Share this post


Link to post
Share on other sites

Thanks Lanny but all I am doing is cutting and pasting. It is best to go to source material for this type of stuff because so much out there is based on opinion. Goldbrick is right, people constantly use ground balance numbers to compare mineralization from one site to the next. Most people would agree that ground with lower ground balance settings is generally easier to handle than ground with high ground balance settings. However, the information below will show that is not always true, it is just what we experience most often in the U.S.

I did throw that note in from Bruce Candy above because Australia ground in general is fundamentally different than most ground in the western U.S. Our big offender tends to be magnetite (Fe3O4), in Australia it is usually maghemite (Fe2O3). From Dave Johnson at https://www.detectorprospector.com/files/file/53-gold-prospecting-with-a-vlf-metal-detector/

 

Susceptibility refers to a material’s ability to attract a magnetic field. In the context of metal detecting, it corresponds to the amount of magnetically active mineralization in the soil. It is often expressed as an equivalent percent by volume concentration of magnetite.

Tangent of loss is the ratio of magnetic energy absorbed by a material and dissipated as heat, divided by the magnetic energy which is attracted to the material and not dissipated. The tangent of loss is most commonly expressed in arctangent form as the loss angle. In the context of metal detecting, it corresponds to the ground balance point of the soil. In a general way it represents the type of mineralization present rather than the amount.

Magnetite (ferrosic oxide) is a heavy black iron oxide mineral which exhibits high magnetic susceptibility and low magnetic loss angle. It is commonly found as “black sand” or as dense black rocks. It is strongly attracted to a magnet. It usually “balances” near the ferrite calibration point of the metal detector, which on most detectors is within the range of 80 to 95% of full scale. Many black colored rocks, especially igneous (volcanic & extrusive) and high-grade metamorphic rocks, contain appreciable amounts of magnetite. So do many rocks with a bluish or greenish cast, especially rocks in ultramafic greenstone belts. Magnetite in the soil is usually in the form of sand, because particles smaller than sand unprotected by rock matrix tend to oxidize to maghemite or to be dissolved by organic acids.

Maghemite (gamma ferric oxide) is an earthy iron oxide mineral found in most soils and some rocks. Red iron rust is a form of maghemite with which everyone is familiar. Maghemite is formed by the oxidation of lower oxidation state iron minerals such as magnetite, free iron and pyroxene. The oxidation commonly happens through weathering and exposure to fire. Maghemite is usually reddish brown or red in color, and even in low concentrations its color tends to dominate the material it’s in. Like magnetite, maghemite has high susceptibility. It differs from magnetite in having a substantial loss angle, causing it to ground balance in the range of 40 to 80% of full scale on most metal detectors and under most conditions.

Now, if you read that again, magnetite will usually produce ground balance numbers in the 80 - 95 range. Maghemite, although it is much worse for detectors and in fact is what gives even PI detectors trouble in Australia, ground balances in the 40 - 80 range. In other words, ground with lower ground balance settings in Australia can be much worse than ground with high ground balance settings in the U.S.

Final tidbit. You know that really bad, bad soil that drove you nuts in the forest fire area? That is maghemite. Intense heat will bake our more normal soils and produce soils more common in Australian goldfields. Those of you that have run into it now know what the Aussies deal with in some regions.

  • Like 3
  • Thanks 1

Share this post


Link to post
Share on other sites

Steve,

Thanks for your updates and for the information, regardless of the source. I sincerely appreciate your efforts to be helpful.

As for the forest fire soil, yes I know what you're referring to, and I know how the detector responds to the dirt, though I had no idea why the coil responded to the altered soil, so thanks for that as well.

All the best,

Lanny

  • Like 1

Share this post


Link to post
Share on other sites

Well, I have a simple but easy classification for all that stuff...it starts with another G@# D%^$ hotrock.

just kidding, thanks for the science/geology lesson.

fred

Share this post


Link to post
Share on other sites

As far as I know the White's GMT is the first detector that Dave Johnson was involved in that included the Fe3O4 meter.

The White's GMT constantly displays the ground balance setting, typically in the 70-80 range. This number is telling you what type of mineralization is affecting the GMT and is very much akin to the target VDI number displayed on coin detectors except that here it is a ground reading. The GMT also displays the amount of the mineral being detected. This is called the "Follow Black Sand" reading because it can be used to trace shallow black sand deposits that in turn can be used to locate gold deposits. A reference number in the upper right portion of the display shows this value. The number grows as the coil is pumped up and down over concentrations of black sand. The readings are relative so the idea is to take readings at various locations across a dry wash for example, and then to focus on the highest readings as being the probable location of a black sand deposit.

From the GMT Field Report:

"The left number is labeled Ground Balance (Type of Mineral). This number is on a scale of 1-100. Higher numbers indicate more negative or "colder" ground, such as black sand. Lower numbers indicate positive ground, such as salt or alkali. This scale corresponds to the ground balance range, and the number shown will tell you roughly where the unit is ground balanced. The number on the right, again on a scale of 1-100, is labeled Follow Black Sand (Amount of Mineral). It will not only let you follow a stringer of black sand hidden in a wash, but it will also let you find old hard-to-see fine tailings piles from drywashers. Pumping the coil up and down may be more accurate than sweeping side to side for these chores."

whites-gmt-follow-black-sand.jpg

So, you are walking up a dry wash. You pump the coil here and you pump the coil there. You pump the coil over a spot to get an accurate amount reading. The answers are relative. One spot reads 30, another reads 50 (I am making these numbers up). The spot reading 50 generally has more magnetite in the soil. Not always as a shallow magnetite deposit might give a higher reading than a deeper deposit that actually has more. But all things being equal, the higher the amount number, the more magnitude. Ignore small differences. But twice as much in one spot versus all the others, perk up!

Field Report by Jim in Idaho here

  • Like 1

Share this post


Link to post
Share on other sites

There's nobody in "forumdom" world who works like our Steve.

this thread will likely be the "go to" reference for mineralization basics in time to come.

thanks Steve.

  • Like 1

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By Steve Herschbach
      I do what I can to foster competition that develops alternatives to the all too common VLF detector. There are plenty of options out there, but in my opinion they all weigh too much or cost too much. Usually both.   I envision people out there with a popular VLF metal detector for beach, relic, or gold detecting. These machines all sell for around $700 and weigh 2.5 - 3.9 lbs. Perhaps they would like to add a ground balancing PI (GBPI) to what they have. I think that for "normal people" with normal budgets a machine under $2K and under four pounds just makes sense. It would be more than twice what they spent for their VLF, and in this day and age there is no reason why a decent PI should weigh over 4 lbs.   To clarify what I am talking about here, I should say that for many people a $700 VLF detector is a great place to start and in many cases is all a person ever needs. However, there are places where extreme ground mineralization and mineralized rocks (hot rocks) severely impede the performance and use of VLF detectors. Alternative technology to deal with these conditions has been developed, by far the most familiar being the Minelab ground balancing PI (GBPI) detectors. These differ from common PI detectors by having the ability to ground balance. Other brands have offered the Garrett Infinium (discontinued) plus Garrett ATX and the White's TDI models.   These detectors are used not just for gold prospecting but also by relic hunters, beach detectorists, and others who face challenges regarding ground mineralization and VLF detectors.   Frankly, in my opinion GBPI technology is largely maxed out. The main room for improvement comes now in better ergonomics at lower prices. This challenge therefore limits detectors to those that weigh under 4 pounds with battery included, and which sell brand new with warranty after discounts for under US$2000. Detectors need not be ground balancing PI models, but must offer similar ability to ignore mineralized ground and hot rocks that trouble VLF detectors. I am going to rate detectors as to their relative performance using what I call the "Minelab Rating Scale. Details here.
      1. Minelab SD 2000 - crude first version, very poor on small gold, excellent on large deep gold
      2. Minelab SD 2100 - vastly refined version of SD 2000
      3. Minelab SD 2200 (all versions) - adds crude iron disc, ground tracking
      4. Minelab GP Extreme - adds greatly improved sensitivity to small gold, overall performance boost.
      5. Minelab GP 3000 - Refined GP Extreme
      6.  Minelab GP 3500 - Greatly refined GP 3000, last and best of analog models
      7. Minelab GPX 4000 - First digital interface, rock solid threshold
      8. Minelab GPX 4500 - Refined GPX 4000, solid performer
      9. Minelab GPX 4800 - Released at same time as GPX 5000 as watered down version
      10. Minelab GPX 5000 - Culmination of the series, current pinnacle of GBPI prospecting machine technology.
      All Minelab models leverage an existing base of over 100 coil options from tiny to huge.
      I am a very practical person when it comes to detecting. I know all the existing models and options by all brands very well, perhaps better than almost anyone. This is the way I look at it is this. If I personally were to spend a lot of money to go gold prospecting for one month, and needed a GBPI detector, considering machines past and present, what would I get and in what order of choice? Put aside concerns of age, warranty, etc. just assume functioning detectors.
      Here is the issue in a nutshell. On the Minelab scale of one to ten as listed above, I would be generous in rating the White's TDI SL as a 2. Same with the Garrett Infinium which I will mention in passing as it is no longer being made. If I was going to spend a month of my time and a lot of money going on a prospecting trip, I would choose a TDI in any version over the SD 2000. I might go with a TDI Pro over a SD 2100 but I would have to think real hard about that, and when push comes to shove I would go SD 2100 were it not for the realities of age I said to ignore. A newer TDI Pro might be a better bet than a very old SD 2100 from a reliability standpoint, but again, this would be a tough choice. The TDI SL not really. In my opinion I would be shooting myself in the foot to go on this hypothetical trip with a TDI SL instead of a SD 2100.
      You see the problem now?
      The Garrett ATX fares better. I would rate it a 3, roughly analogous to the SD 2200 variants. Still an agonizing choice really and the ATX being new versus SD 2200 being old might again be the tipping point, but from a pure prospecting options perspective the case can be made that the SD 2200 might be the better way to go. The problem for this challenge is the ATX weighs way over 4 lbs and sells for slightly over $2000. The price is close enough really but the 7 lb weight is way off.
      That's it folks. That is reality. The best of the best that the competition can offer can only go solidly up against models Minelab has not made in years. I am not saying that to be mean or as some kind of Minelab toadie, that is my pure unvarnished opinion as a guy who is pretty well versed on the subject.
      Let's bring it all home. This person with the $700 machine really, really wants that under 4 lb, under $2K GBPI machine, but if they do their homework they discover that truthfully, they would be better off shopping for a used Minelab than what the competition offers new. With the TDI SL rated as a 2 the ATX in a much lighter box at under $2K is a solid win as a 3. A well designed ATX with standard dry land coils would look very enticing as compared to the GP series Minelabs. But Garrett refuses to budge!
      White's can certainly do something, anything to improve the TDI SL. A battery that lasts all day would be a good start. In the end they are limited by the basic single channel design of the machine. The SD 2000 dual channel design was literally the answer to and the improvement on the single channel technology used in the TDI, the basics of which predate the SD 2000. Still, White's currently owns the under 4 lb under $2K GBPI category so they have the first out of the starting gate advantage. Anything they do would at the very least just show they have not given up.
      The Minelab MPS patent that formed the basis of the SD series has expired. Not sure about DVT, which formed the basis of the GP series. Where is the competition? What the heck is going on here? Much gnashing of teeth and pulling of hair is going on here, that's what!!!
      That is my challenge to the manufacturers. Under 4 lbs, under $2K, on the 1-10 scale I am offering, what is the best you can do?
      The TDI SL as a 2? Really? Yes, really, that is currently the best of the best in the brand new ground balancing PI, full warranty, under 4 lb, under $2k category. You can pick up a 3.5 lb TDI SL right now brand new for $1049. The White's TDI SL takes the crown.
      Hopefully we will see more competition in this wide open category soon. I have been beating this drum for years to no avail, but I do have reason to believe we are finally going to see more alternatives soon. I hope.

    • By Steve Herschbach
      Which metal detectors have the most reliable target ID numbers?
      Target ID is a function of depth - the deeper the target, the more difficult it is to get a clean target ID as the ground signal interferes. Other items directly adjacent to the desired target can also cause inaccurate numbers. The more conductive the item, the higher the resulting ID number, but also the larger the item the higher the number. Silver is more conductive than gold, so a gold item will give a lower number than the same size silver item. But a very large gold item can give a higher number than a small silver item, so numbers do not identify types of metal. Gold and aluminum read the same and vary in size so to dig one you dig the other. Only mass produced items like coins produce numbers that are more or less the same over the years but a zinc penny will read lower than a copper penny due to the change in composition.
      In general iron or ferrous targets produce negative numbers or low numbers. Aluminum, gold, and US nickels produce mid-range numbers. And most other US coins produce high numbers. Other countries coins, like Canadian coins with ferrous content, can read all over the place.
      The scale applied varies according to manufacturer so the number produced by each detector will vary according to the scale used. The 0-100 range for non-ferrous targets is most common but there are others. Minelab employs a dual number system on a 2D scale with thousands of possible numbers, but they are now normalizing the results produced to conform more closely to the linear scale used by other manufacturers.

      Increasing ground mineralization has a huge effect on the ability to get a good target ID. Ground mineralization is nearly always from iron mineralization, and this tends to make weak targets, whether very small targets or very deep targets, misidentify. The target numbers get dragged lower, and many non-ferrous targets will eventually be identified as iron if buried deep enough. Small non-ferrous readings and iron readings actually overlap. That is why any discrimination at all is particularly risky for gold nugget hunters.
      If you want target ID numbers to settle down, lower sensitivity and practice consistent coil control. The target number will often vary depending on how well the target is centered and how fast the coil moves.
      Higher sensitivity settings lead to jumpier numbers as the detectors become less stable at higher levels. The interference from the ground signal increases and interference from outside electrical sources also increases, leading to less stable numbers.
      Higher frequency detectors are inherently more sensitive and are jumpier. So lean lower frequency for more solid results. Multi frequency detectors act like low frequency detectors and tend to have more solid target numbers due to the ability to analyze a target with different frequencies.
      Another issue is the number of target categories, or ID segments, or VDIs, or notches, or bins (all names for the same thing) that a detector offers.
      For instance here are the number of possible target id categories or segments each detector below offers:
      Fisher CZ-3D = 7
      Garrett Ace 250 = 12
      Minelab X-Terra 305 = 12
      Minelab X-Terra 505 = 19
      Minelab X-Terra 705 = 28
      Minelab Equinox = 50
      Fisher F75 (and many other models) = 99
      White's MXT (and many other models) = 190
      Minelab CTX 3030 = 1750
      Fewer target categories means more possible items get lumped together under a single reading, but that the reading is more stable. Many detectors will tell you the difference between a dime and a quarter. The Fisher CZ assumes you want to dig both so puts them under one segment along with most other coins.
      People who use detectors with many target numbers usually just watch the numbers jump around and mentally average the results. Some high end detectors can actually do this averaging for you! But I think there is something to be said for owning a detector that simplifies things and offers less possible numbers to start with. The old Fisher CZ method still appeals to me, especially for coin detecting. So do detectors like the Garrett Ace 250 or Minelab X-Terra 505 for the same reason.
      The problem is that as people strive to dig deeper targets or smaller targets the numbers will always get less reliable. But if you want to have a quiet performing metal detecting with solid, reliable target numbers look more for coin type detectors running at lower frequencies under 10 kHz or at multiple frequencies and possibly consider getting a detector with fewer possible target segments. And with any detector no matter what just back that sensitivity setting off and you will get more reliable target numbers.
      ads by Amazon...
      Detectors often use tones to identify targets and often use far fewer tones than indicated by the possible visual target id numbers. The X-Terra 705 for instance can use 28 tones, one for each segment. However, most people find this too busy, and so simple tone schemes of two, three, or four tones may be selected. I think it is instructive that many people often end up ignoring screen readings and hunting by ear, using just a few tones. This ends up just being an ultra basic target id system much like the simpler units offer. Reality is that most people do not need or care about huge numbers of target numbers. For many just three ranges suffice, low tone for iron, mid tone for most gold items, and high tone for most US coins. The meter could do the same thing, but for marketing purposes more is better and so we get sold on detectors with hundreds of possible target ID numbers. Perhaps this is a digital representation of an old analog meter with its nearly infinite range of response but the reality is we do not need that level of differentiation to make a simple dig or no dig decision.
      Finally, a picture often says it all. Below we have a shot of the White's M6 meter. I like it because the decal below illustrates a lot. You see the possible numerical range of -95 to 95 laid out in the middle. Over it is the simplified iron/gold/silver range. Note the slants where they overlap to indicate the readings really do overlap. Then you get the probable target icons. -95 is noted as "hot rock" because many do read there.

      The M6 can generate 7 tones depending on the target category. I have added red lines to the image to show where these tones sit in relation to the scale. It breaks down as follows:
      -95 = 57 Hz (Very Low) Hot Rock
      -94 to -6 = 128 Hz (Low) Iron Junk
      -5 to 7 = 145 Hz (Med Low) Gold Earrings, Chains - Foil
      8 to 26 = 182 Hz (Medium) Women's Gold Rings/Nickel - Small Pull Tabs
      27 to 49 = 259 Hz (Med Hi) Men's Gold Rings - Large Pull Tabs
      50 to 70 = 411 Hz (High) Zinc Penny/Indian Head Penny - Screw Caps
      71 to 95 = 900 Hz (Very High) Copper Penny/Dime/Quarter/Dollar
      Note that the screen reading of +14 is noted as being a nickel or ring but it can also be the "beaver tail" part of an aluminum pull tab or the aluminum ring that holds an eraser on a pencil, among other things.
      The best book ever written on the subject of discrimination is "Taking A Closer Look At Metal Detector Discrimination" by Robert C. Brockett. It is out of print but if you find a copy grab it, assuming the topic interests you.
      Always remember - when in doubt, dig it out! Your eyes are the best target ID method available.


    • By Steve Herschbach
      High Frequency Gold Nugget Detector Roundup
      Our cup runneth over!
      Just a few years ago the market for "over 30 kHz nugget detectors" was quite limited. For a long time there were only a few options:
      Fisher Gold Bug 2 (71 kHz) $764 with one coil
      Minelab Eureka Gold (6.4, 20, & 60 kHz) Discontinued $1049 when new with one coil
      White's GMZ (50 kHz) Discontinued $499 when new with one coil
      White's GMT (48 khz) $729 with one coil
      Things were that way for over a decade. Then in 2015 Makro introduced the Gold Racer (56 kHz) $599 with one coil. Sister company Nokta released the AU Gold Finder (56 kHz) $799 with two coils
      Then in 2017 we see the Minelab Gold Monster 1000 (45 khz) at $799 with two coils. And although not a dedicated nugget detector, the Deus high frequency coil options (up to 80 kHz) were also released, $1520 for complete detector with one HF coil.
      Now in 2018 we get another general purpose machine, the Equinox 800, that can hit 40 khz, $899 with one coil. And just announced...
      the Makro Gold Kruzer (61 kHz) $749 with two coils and
      the White's Goldmaster 24K (48 khz) $729 with one coil
      These last two announcements have made barely a ripple in the prospecting world, or at least going by other forums that seems to be the case. There are various reason for that (forums not being prospecting oriented or being Minelab centric) but still the lack of buzz is interesting. I do believe people are both burned out by all the new introductions and that the market is saturated with high frequency models. Leaving out the general purpose machines to sum up the current options it looks like the current "sweet spot" for pricing is a high frequency model at $749 with two coils. The Gold Bug 2 saw a price reduction to $699.
      Makro Gold Racer 56 kHz - $599 one coil
      Fisher Gold Bug 2 71 kHz - $699 one coil
      White's Goldmaster 24K 48 kHz - $729 one coil
      White's GMT 48 khz - $729 one coil
      Makro Gold Kruzer 61 kHz - $749 two coils
      Minelab Gold Monster 1000 45 kHz - $799 two coils
      Nokta AU Gold Finder 56 kHz - $799 two coils
      Added 1/2019 XP ORX up to 81 kHz - $899 one coil

      High frequency nugget detectors compared

      White's Goldmaster 24K, Minelab Equinox 800, Gold Monster 1000, Makro Gold Kruzer

      Minelab Gold Monster, Fisher Gold Bug 2, Makro Gold Racer, Nokta Impact
    • By glabelle
      I've seen debate about this question over and over. Thanks to Minelab's vague description of their use of Multi-IQ on both machines. I measured both the 800 and the 600 (my backup machine) and can put this to rest. They both output identical spectrums.

    • By glabelle
      I hooked up a sensor coil to pick up the transmit frequencies from my 800. Connected to an audio spectrum analyzer I could see what was being transmitted in all the modes. Surprise, Park 1 uses only a single frequency ~ 15KHz. The amplitudes shown are relative. 




    • By SLGuin
      Just finished a second day hunting with the new Mirage PI. Short days, I seldom go for more than 2-3 hours, but enough to start learning a new to me machine. Something I notice and wonder about. The  9.5" mono coil appears more sensitive to iron near the edge of the coil, while nonferrous seems to hit harder near the center of the coil. Could that be a thing or am I deluded? If it is a real thing, is it a reliable way to make dig decisions?
      I could swear I read something somewhere about this, but am no longer sure because I am deluded in general anyway. Anyone got thoughts?
×
×
  • Create New...