Jump to content
Steve Herschbach

Fisher Impulse AQ Video - Zpt® Zero Pressure Technology

Recommended Posts

Explanation of new coil mounting system on the new Fisher Impulse AQ metal detector. ZPT® "Zero Pressure Technology" Official Fisher video.

Fisher Impulse AQ Detector Data & User Reviews

fisher-impulse-aq-zero-pressure-technology-zpt.jpg
Fisher Impulse AQ ZPT® "Zero Pressure Technology"

fisher-impulse-aq-zero-pressure-technology-zpt-details.jpg
Fisher Impulse AQ ZPT® "Zero Pressure Technology" detail image

Share this post


Link to post
Share on other sites

Time to bump to the top. I’ve replaced the old videos in the original posts with the latest versions supplied by Alexandre. 👍🏼

  • Like 2

Share this post


Link to post
Share on other sites

I'm wonder how the "AQ" will do at the edge where the rough water and wet sand meet. A very abrasive area, as far as the coil to shaft fittings....That's a lot of contact points for sand to get in and wear. A problem once in the saltwater also....... specially when a person hunts over a thousand hours a year, like Dew. Me, the "AQ" won't be my number one for I plan on using the excalibur to locate area's of interest, then go in with the "AQ" and dig all. So the "AQ" maybe looking at 400 hours use a year for me. So how is this ...Zero Pressure Technology.....going to hold up? I'm looking at it and thinking sand..composite material....Mixed....problems in time. 

  • Like 2

Share this post


Link to post
Share on other sites

I am a design engineer. Spontaneously I can say it is a good and robust design to attach the coil to the shaft.There is no point of failur in the design itself but as OBN says the game changes when you work in saltwater and sand for an amount of time.I am more concern about the thickness of the coil(it is thick!!) and drag resistance in the water.Is there any coil cover? I hav'nt seen benethe the coil if the epoxy is exposed or if its covered.any idea?


 

 

 

 

 

  • Like 1

Share this post


Link to post
Share on other sites

Does the Anti Rotation Mechanism lock the coil in place....if so, then any wear/abrasion should be minimal ?

I’m looking at the small notched red male parts and notched female part of the coil bracket. Looks promising 👍

Excessive coil movement would probably override the design but if it offers good resistance then that should be sufficient.

  • Like 1

Share this post


Link to post
Share on other sites

I'm thinking about plan "B"... If it fails over time, how about a long nylon bolt or a couple short ones with rubber washers similar to what is being used on most of the coils now?

  • Like 1

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By Dances With Doves
      how is the mineral content in lake tahoe. Is it bad?I   heard that the land on that lake is highest price in country.Canandaiugua lake by me is  second so I hear.Canandaigua is where Susan b Anthony had her trial. I found a steamer tag 1865-1889 from a ship by that name that I think burnt.
       
       
    • By Steve Herschbach
      With thanks to PPP, here is the new official Fisher Impulse AQ Facebook page:
      https://www.facebook.com/FisherLabs-Impulse-AQ-Metal-detector-101853481468095/

      And phrunt found this:
      https://fisher-impulse.com/
      Registrant:
      Organization: FIRST TEXAS PRODUCT Presumably we will see the first full announcement information on the Facebook page since that is how things seem to be done these days. Interesting there has been no mention of the main Fisher company Facebook page.
    • By Steve Herschbach
      With the exception of the battery cable sticking out the back I really like the look of this detector. And after swinging a 7 lb Garrett ATX this 4.2 lbs of well balanced detector is going to seem like a dream on my arm. I ditched both my ATX and my 7.2 lb Minelab GPZ 7000 a couple years ago in a fit of passive-aggressive protest over those heavy beasts, and swore not to buy another pulse machine until somebody made something more in line with the ergonomics I desired. The Impulse AQ tips the scales at a little over 4 lbs, but that is largely because of the 12" round coil. A smaller coil is a distinct possibility, as is the ability to belt mount the battery. That's the benefit of that funny looking battery cable arrangement - external batteries. In any case, good enough for me and a huge improvement of what I'm used to. The price remains to be seen, but it has a good chance at coming in under $2000, making the new Fisher Impulse AQ one of the best contenders so far in my Under 4 lb, Under $2K Challenge
      Fisher Impulse AQ Data & Reviews

      Fisher Impulse AQ discriminating pulse induction metal detector
    • By Bill (S. CA)
      Hey Rick, heard anything more from El Paso as to their return to work?
      Bill
      Fisher Impulse AQ Data & Reviews

       
    • By fredmason
      I may have missed this issue..you know I am not very smart.
      will the prospecting, nugget finding version be wireless?
       I could not, would not buy another detector that doesn’t have a module.
      thanks
      fred

    • By BigSkyGuy
      Many of you have expressed a desire to know how well the Impulse AQ will function for land use. One option is to wait until the unit is released. I know, no fun! The other option is to analyze the information we do have on the unit and on PIs in general, combined with information from the scientific literature and various forum posts. I have done such an analysis which is a bit long, but I will summarize the findings followed by how I arrived at the conclusions. The places where I believe the unit will be effective include the following:
      Black sand beaches (mainly coarse unweathered magnetite)
      Soils containing mildly weathered granite and other felsic igneous rocks (I know this appears to conflict with Alexandre’s post, but I will elaborate below)
      Unweathered or mildly weathered basic igneous rocks (basalt, gabbro, etc.)
      Places where I think the AQ will struggle include:
      Weathered basalt and soils derived from basalt
      Some fine-grained volcanic rocks such as rhyolite.
      The basis of my groupings above is the published magnetic susceptibilities (MS) for various minerals and rock types and on the concept of frequency dependent MS which is a very important consideration for PI detectors.
      MS is a measure of the magnetization of a material in response to an applied magnetic field. Frequency dependence is when the measured MS varies when different frequencies are used for the induced field. Minerals with high MS are responsible for the “mineralization” when speaking of metal detector performance. Three minerals are responsible for most “mineralization”; magnetite (Fe3O4), titanomagnetite, and maghemite (ꝩ-Fe2O3). The MS for these minerals are orders of magnitude higher than for other iron minerals such as hematite (α-Fe2O3), goethite, biotite, pyroxenes, etc. The relative proportions of these minerals within different rock types determines the MS of the rock. Ranges for different rock types are shown in the table below.
      Rock Type
      Magnetic Susceptibility Range (10-6 SI)1
      Andesite
      170,000
      Basalt
      250-180,000
      Diabase
      1,000-160,000
      Diorite
      630-130,000
      Gabbro
      1,000-90,000
      Granite
      0-50,000
      Peridotite
      96,000-200,000
      Porphyry
      250-210,000
      Pyroxenite
      130,000
      Rhyolite
      250-38,000
      Igneous rocks
      2,700-270,000
      Average felsic igneous rocks
      38-82,000
      Average basic igneous rocks
      550-120,000
      Quartzite
      4,400
      Gneiss
      0-25,000
      Limestone
      2-25,000
      Sandstone
      0-20,900
      Shale
      63-18,600
      1.       Compilation from Hunt et al. (1995)
       
       
      Minerals with high MS are responsible for the poor performance of VLF metal detectors. Hematite within soils is typically red, but given the relatively low MS, is not particularly problematic to metal detectors. So, red soil is not always bad!
      The MS of soil is a function of the parent rock from which it was formed (see table) and the degree of weathering of the iron minerals present. Soils formed from basic igneous or volcanic rocks such as basalt generally have higher MS than soils formed from felsic rocks (rhyolite, granite, etc.), but it depends on the specific rock. For example, some granites have low MS because they are dominated by ilmenite (S-type granite) as opposed to magnetite (I-type granite). Ilmenite has low MS. Geologists use MS to map different types of granite. Da Costa et al. (1999) found that the basic volcanic rocks from southern brazil produced soils containing maghemite (high MS) and hematite while the intermediate to felsic volcanic rocks produced soils containing goethite (low MS). However, there are examples of basic rocks having low MS and felsic rocks with high MS, it all depends on the mineralogy, the grain size, the degree of weathering, subsequent geochemical reactions during and after soil formation, and other factors.
      Typically, the smaller the grain size, the higher the MS. Therefore, a volcanic rhyolite which has a much smaller grain size than its intrusive equivalent granite, will have a higher MS even for an identical magnetite content. Smaller magnetite particles also weather faster than coarser grains. Magnetite can weather to maghemite on exposed outcrops. Maghemite is an earthy mineral that forms very small grains. The small grains produce a superparamagnetic domain which results in frequency-dependent MS which causes problems for even PI metal detectors, especially PIs which do not have the ability to ground balance (such as the Sand Shark and Impulse AQ). Magnetite can also form very small grains, and if small enough can also be superparamagnetic. However, magnetite tends to be coarse-grained while maghemite tends to be very fine-grained.
      Maghemite tends to form from magnetite and other minerals in tropical climates or where tropical climates once existed. The “bad ground” in Australia is due to the presence of maghemite, which is a brown to brick red mineral. Maghemite is less common in the US but is present. Magnetic anomalies found at the National Laboratory at Oak Ridge TN were found to be natural deposits of iron-bearing colluvium (sediment which has accumulated at the base of a mountain range) which has oxidized to maghemite (Rivers et al., 2004). Maghemite and hematite can be created from goethite (α-FeOOH) in response to the heat generated by forest fires and slash and burn agriculture (Koch et al., 2006). Therefore, poor detecting conditions can be created in such areas.
      The bad ground at Culpepper VA is probably due to maghemite, but I have seen no information to confirm this. Geologic maps of Culpepper Co. do show the presence of basic bedrock, such as basalt and dolerite.
      The granite that Alexandre mentioned as giving the Impulse AQ problems may be an I-type granite (magnetite rich) in which the magnetite has partially weathered to maghemite.
      The reasons for why I think the Impule AQ will or will not work in various soils/rock types is summarized below.
      Soil/Rock Type
      AQ Works?
      Reason
      Black sand layers on beach
      yes
      Black sand is derived from physical weathering of igneous and metamorphic rocks in upland areas and consists mainly of relatively unweathered magnetite.
      Soils derived from felsic igneous rocks
      probably
      Felsic igneous rocks with high MS, tend to be coarse grained and even when dominated by magnetite (I-type) do not typically produce maghemite unless highly weathered.
      Soils derived from basic igneous rocks
      Probably not
      Soils derived from basic igneous rocks tend to be dominated by maghemite.
      Basic igneous hot rocks
      maybe
      Basic igneous rocks such as gabbro can be a problem if weathered or partially weathered to maghemite.
      Felsic igneous hot rocks
      probably
      Unless highly weathered, felsic rocks are dominated by magnetite which the AQ should be able to handle
      Volcanic hot rocks or black sand beaches (i.e. Hawaii)
      maybe
      If fresh, the main source of MS is magnetite. If weathered or partially weathered to maghemite, the AQ may have problems. If very fine grained even unwethered volcanic rocks may present a problem.
       
      References
      Da Costa, A.C.S, Bigham, JM, Rhoton, FE, and SJ Traina. 1999. Quantification and Characterization of Maghemite in Soils Derived from Volcanic Rocks in Southern Brazil. Clays and Clay Minerals, v. 47, no. 4, p. 466-73.
      Hunt, CP, Moskowitz, BM, and SK Banerjee. 1995. Magnetic Properties of Rocks and Minerals. In Rock Physics & Phase Relations: A Handbook of Physical Constants, Volume 3.
      Koch, C.B, Borggaard, OK, and A. Gafur. 2005. Formation of iron oxides in soils developed under natural fires and slash-and-burn based agriculture in a monsoonal climate (Chittagong Hill Tracts, Bangladesh). Hyperfine Interact 166, 579–584.
      Rivers, JM, Nyquist, JE, Terry, D.O., and W. E. Doll. 2004. Investigation into the Origin of Magnetic Soils on the Oak Ridge Reservation, Tennessee. Soil Science Society of America Journal, Vol. 68 No. 5 p. 1772-1779.

×
×
  • Create New...