Jump to content

Search the Community

Showing results for tags 'detector tech'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


  • Metal Detecting & Gold Prospecting Forums
    • Meet & Greet
    • Detector Prospector Forum
    • Metal Detecting For Coins & Relics
    • Metal Detecting For Jewelry
    • Metal Detector Advice & Comparisons
    • Metal Detecting & Prospecting Classifieds
    • Compass, D-Tex, Tesoro, Etc.
    • First Texas - Bounty Hunter, Fisher & Teknetics
    • Garrett Metal Detectors
    • Minelab Metal Detectors
    • Nokta / Makro Metal Detectors
    • Tarsacci Metal Detectors
    • White's Metal Detectors
    • XP Metal Detectors
    • Metal Detecting For Meteorites
    • Gold Panning, Sluicing, Dredging, Drywashing, Etc
    • Rocks, Minerals, Gems & Geology


  • Best of Forums
  • Gold Prospecting
  • Steve's Guides
  • Steve's Mining Journal
  • Steve's Reviews


  • Free Books
  • Bounty Hunter
  • Fisher Labs
  • Garrett Electronics
  • Keene Engineering
  • Minelab Electronics
  • Miscellaneous
  • Nokta/Makro
  • Teknetics
  • Tesoro Electronics
  • White's Electronics
  • XP Metal Detectors
  • Metal Detector Settings

Find results in...

Find results that contain...

Date Created

  • Start


Last Updated

  • Start


Filter by number of...


  • Start



Website URL










Gear Used:

  1. A nice summary quote from Tom Dankowski about why Simultaneous Multi Frequency (SMF) is worth consideration over single frequency options... “SMF's punch through bad dirt better. Hold on to accurate ID's at depth....and in bad dirt....better. Handle EMI better. Genuinely handle wet-salt better..... to include more accurate ID at depth.,.,.,.,.,.,.,., and a host of other rationale/justifications.” Fisher Intelligence (5th Edition) by Thomas J. Dankowski
  2. While experimenting with my Gold Racer, I think I saw more stable VIDs by raising the coil and scanning perpendicular to magnetic north. There seemed to be a height that was most stable, and scanning perpendicular to magnetic north tended to eliminate oscillation between very low and very high values. It wasn't perfect, but it was suggestive. I'm wondering if anyone else has anything to offer about this.
  3. First Texas (Bounty Hunter, Fisher, Teknetics) - last new models Fisher F75+ and Teknetics T2+. Next up a new pulse induction (PI) beach detector. A new digital multifrequency to replace the Fisher CZ3D is long overdue but at this rate we will be lucky to just see the PI before the end of the year. Garrett - last new model the AT Max. Hard to believe the flagship GTI 2500 has been around since 1999 with no updates. Garrett so far has shown no interest in multifrequency. The most I was hoping for was a lightweight dry land version of the ATX, but so far no sign of that happening either. I doubt we will see anything else from Garrett this year but they could surprise. Makro - last new models the Multi Kruzer and Gold Kruzer. Makro has mastered single frequency so everyone would like to see what they can do with multifrequency or pulse induction. I expect Makro is done with new models for the year. Minelab - last new models Equinox 600 and 800. I have no idea what’s up next for detectors but I sure would like to see that small coil for my GPZ 7000. I really don’t expect anything new for the rest of the year besides Equinox accessories. Nokta - sister company to Makro. Last new detector the Nokta Impact. Up next the Nokta Anfibio. Tesoro - Who? What? White’s - last new models the MX7 and TDI SL Special Edition plus the just announced Goldmaster 24K. Hopefully that new tech will eventually see the light. Right now just getting the 24K out the door is job one. XP - last new products the HF coils for the Deus, with X35 coils and XP Orx due by end of year.
  4. Hi, I am looking to purchase a gold finding metal detector that can handle mineralized soil well, but also locates smaller gold. I live in southern Nevada and it seems that the more I read, the more confused I am getting. I guess I'm looking for a detector that does well with tiny and larger gold. I had the Gold Bug 2 for a while and it was way too sensitive for me and not rain-proof. The Makro Gold Kruzer, The Gold Monster and others on that level are all within my price range, so I am having trouble making a decision. I understand that the right detector for someone may not be the right detector for someone else, but I do believe the right input is valuable. I haven't seen any head to head videos using the Gold Kruzer yet (still too new) but it looks promising so far. The reviews of these detectors are great, but nothing beats real world testing under various conditions and soil types. I am not one for air testing due to it's controlled nature, so the confusion grows. I know many of these detectors can locate tiny gold due to their higher kHz, but there is a trade off. I appreciate any suggestions. Thank you, Mike
  5. Steve's Law of Target Depletion - All good locations with high value targets will be detected with progressively more aggressive means until no metal can be found. When any location contains items of great perceived value, detector technology will normally be applied in reverse order of aggressiveness. First will be VLF discrimination "cherry picking". This will be followed by varying degrees of "turning down the discrimination" to dig iffy targets and then on to using the barest of ferrous/non-ferrous discrimination. This will finally be followed by "all metal" detecting to remove masking effects with either VLF or PI detectors. If the location is considered good enough all targets will eventually over time be completely removed until no detector is able to acquire a target. At this point a site may be considered "hunted out" until a new technology arrives allowing for more depth or ground separation capability, when a few more remaining metal items will be removed. The key concept is that since discrimination is unreliable, all metal items must be removed from high value locations in order to rest assured nothing has been overlooked. Nugget hunters and beach hunters get right with the program. If a nugget "patch" is located it will be relentlessly pounded until no metal remains. Beaches survive to some degree by being a renewable resource but even on beaches the richer, older deposits of jewelry are worked out over time. Good relic locations can and will be subjected to the same attention given to nugget patches, detected relentlessly until no metal remains. The rule is that as long as you can find a piece of metal hope remains that good items can be found. If not you, somebody else can and will return until no metal remains. I have promoted PI detectors for all uses for this very reason for over 15 years now - see that last few paragraphs at www.losttreasure.com from 2005. Most people consider depth to be problem number one, but for many areas target masking is by far the more serious issue. Until detectors can actually see through trash instead of blocking it out, even the smallest surface trash can and will block deeper adjacent items from being detected. Superb discrimination only gets you so far and ultimately the only solution is to remove the surface trash to see what lurks below. The only real limitation we face in this regard is in areas sensitive to digging holes of any sort, like a well groomed park. Even there, slow careful extraction of surface trash over time can reveal old coins missed by others for decades. Beneath The Mask by Thomas Dankowski
  6. Apparently there's a hidden analysis screen in the FBS machines that lead one to a spectrograph of sorts. Much like the V3i which has features hidden away from the end user, supposedly the analysis screen can be accessed via a button sequence that is yet to be discovered. http://metaldetectingforum.com/showthread.php?p=1912446 If you read through the thread, I'm iDetectorX in the last post. If this is a spectrograph it does tend to confirm what Geotech has been telling us all along, that FBS is actually a 2 frequency system in terms of what is actually demodulated and processed, which would be a better explanation in my view as to why it never made it to the end user. In any event, I think it would be an interesting challenge to try to access these hidden item. I'm actually in the process now of doing some experiments with 2 V3s and a V3i, but FBS machines interest me as well. ....ah, forbidden fruit.
  7. can anyone give me a idea on what ratio or scale there is between different metals and depth with the same detector ....say made out of 6 different metals ... US nickel size coins .... silver , gold , alum , nickel , platinum ,steel and stainless steel ......
  8. The following information is from an apparent leak from a First Texas distributor meeting? The link is posted at http://www.detectorprospector.com/forum/topic/555-new-fisher-pulse-induction-multi-frequency-detectors/?p=10571 as part of the thread about upcoming Fisher products that have been circulating for a couple years. These leaks seem to jive with previous statements by Tom Mallory of First Texas. The main one of interest to the people on this forum would be a new CZX model aimed at gold prospecting. Here is the text from the posted screen shot: CZX - Fisher and Teknetics This machine is ground breaking technology Turn on and go 2 frequency - 9:1 ratio No need to ground balance or adjust the detector to the environment It automatically senses the ground and makes changes accordingly. First detector birthed from this platform is a gold unit priced around $1000, but deeper than current VLF, this detector will also see through red dirt, and highly mineralized soil. From this platform other machines will develop. We intend to develop the CZX and MOSCA platforms to offer more machines in the $1000 to $2000 range than have ever been available. Target release 2016 We have senior engineer Dave Johnson on this project The "Mosca" platform referred to is further described and apparently is aimed more at being a general purpose non-prospecting detector (coins, jewelry, relics). Again, here is the text from the posted screen shot: "Mosca" Fisher and Teknetics Waterproof up to 10' (3 meters) Wireless headphones - Waterproof loop and connectors for headphones 2 frequency - 7:1 ratio Hobby/Treasure Market - Great for Saltwater, Relic, Coin Auto Ground Tracking Single Pod Design LCD Pad, control buttons, 2 AA batteries Arm Pad in rear Retail target - $1200 - $2000 Target release 2016 We have dedicated engineers on this project OK, so a gold unit around $1000 that goes deeper than current VLF designs. I also have high hopes that knowing the proclivities of the engineer, Dave Johnson, that it will be relatively light and ergonomic. Dave also prefers simple and the design statements reflect that. We seriously need something that brings gold detector weights and prices back to earth and so hopefully this will be it. I have stated over and over again I would be very happy with ATX equivalent performance in a less expensive lightweight package. Garrett so far seems disinclined to make that unit but they have a year at least before it may be a moot point. The CZX would have to obsolete the White's TDI as it is aimed squarely at or below the same price point and unless it beats TDI performance would be dead on arrival. We will not have long to wait - 2016 is coming fast!
  9. Someone has X-rayed a equinox coil. Pretty good sized circuit board inside! https://md-hunter.com/minelab-equinox-coil-x-ray-is-it-really-the-half-of-machine/
  10. Here's another, a second interesting product I've run into recently. This one has a bit of a giggle factor for me, but I could be wrong. See what you think.
  11. Legendary metal detector engineer George Payne laid the foundations for much of what we consider to be modern metal detector technology. He or companies he worked for hold a host of basic patents. I tripped over this old lawsuit between White's Electronics and the old Teknetics company (acquired by First Texas in later years) over George's invention of basic target discrimination / target id technology. The following is from the public record of the legal findings at https://law.justia.com/cases/oregon/court-of-appeals/1984/677-p-2d-68.html: I thought it provided an interesting peek at some early industry history and so here you go..... Decided February 22, 1984. *69 J. Pierre Kolisch, Portland, argued the cause for appellant. With him on the briefs were Jon M. Dickinson, Francine H. Gray and Kolisch, Hartwell & Dickinson, Portland. Edward T. Monks, Eugene, argued the cause for respondents. With him on the brief were Kenneth A. Morrow, Morrow, McCrea & Divita, Eugene, and Gary S. Kindness, Seattle, Wash., of counsel. Before GILLETTE, P.J., and WARDEN and YOUNG, JJ. GILLETTE, Presiding Judge. Plaintiff White's Electronics, Inc. (White's) commenced this action seeking the imposition of a constructive trust for its benefit in all rights, patentable or otherwise relating to an invention developed by defendant George Payne. White's also sought an injunction restraining defendants from selling any product embodying such an invention and from using any trade secrets or other proprietary information belonging to plaintiff. The trial court denied White's any relief. We affirm. White's is a manufacturer of metal detectors. In 1969, White's hired Payne, an electrical engineer, to invent new metal detector technology. In 1971, Payne signed *70 an employment agreement with White's that stated that he would assign to White's any invention that he developed during and for six months after termination of his employment that related to White's activities or was the result of tasks assigned by it. During this period of employment, Payne assigned to White's two patents covering inventions pertaining to metal detectors. In mid-1976, he terminated his employment and went to work for Bounty Hunters, one of White's competitors. He remained there until late 1978, when he sought reemployment with White's. Because of a noncompetition agreement with Bounty Hunters, he did not become reemployed by White's until January, 1980. He did, however, work as a consultant for White's during the intervening period. When Payne was rehired, he did not sign a new employment agreement. As during his previous employment, he worked to develop innovations in the metal detector field and to solve problems related to White's product line. He assigned one patent to White's during this employment period. The evidence concerning the events of January, 1981, is both conflicting and confusing. Payne testified that on January 9, 1981, he conceived an idea that would enable a metal detector automatically to provide the user with target identifying information, unlike any detector then on the market. He stated that he told defendant Morris, White's marketing manager, of his idea, but that he did not work any further on its development until January 15, when he assembled a breadboard a board containing electrical circuits to test his idea. The breadboard failed to achieve the desired result. On January 17, 1981, following a period of internal management disruption at White's, Payne and Morris both quit. Payne testified that, on January 19, 1981, while working to develop his idea of January 9, he "found something that is going to make this thing work, or allow me to continue development of it." He stated that, following this "breakthrough," he still had to work for many more months before his concept was perfected. On January 28, 1981, Payne and Morris, along with defendant Smith, organized defendant Teknetics, Inc., to market metal detectors in direct competition with White's. In December, 1981, Teknetics introduced a metal detector which incorporated Payne's target-identification concept. Plaintiff contends that Payne's "breakthrough" on January 19, actually occurred earlier while he was still employed by White's. In support of this contention, plaintiff introduced Payne's engineering notes containing circuitry designs dated January 18, 1981. Payne admitted that the date on those notes was in error and that they were probably prepared sometime before the 18th. Plaintiff's expert, an electronics engineer, testified that he or someone similarly skilled could build a target-identification circuit based on the information provided in the drawing. Payne testified to the contrary, stating that the key element to his target-identification concept did not appear in his notes until January 19, after he had left White's employ. The trial court found that Payne conceived his target-identification concept on January 9, but that he did not exert time and effort to develop it until after January 17, the date he left White's employ. According to the court: "The idea achieved the status of invention sometime in March of 1981, as evidenced by the order for print out circuitry systems from another company. Prior to reaching this posture, [Payne] had to address himself to and solve problems of target identification as they related to ground rejection." The trial court concluded from the foregoing that plaintiff was not entitled to either the assignment of the patent or the imposition of a "shop-right." This appeal followed. Absent an agreement to the contrary, an employe who is hired to invent, and who succeeds during his term of service in accomplishing that task, is bound to assign to the employer all rights in the *71 invention. United States v. Dubilier Corp., 289 U.S. 178, 187, 53 S. Ct. 554, 557, 77 L. Ed. 1114 (1933); Mainland Industries v. Timberland Mach., & Eng., 58 Or. App. 585, 589, 649 P.2d 613, rev. den. 213 Or. 801 (1982), cert. denied ___ U.S. ___, 103 S. Ct. 1498, 75 L. Ed. 2d 930 (1983). Furthermore, the practice by an employe of assigning patents to an employer constitutes persuasive evidence of a duty to assign. Mainland Industries v. Timberland Mach. & Eng., supra, 58 Or. App. at 591, 649 P.2d 613. In this case, when Payne was rehired by White's in 1980, no new employment agreement was executed. Although Kenneth G. White, president of White's testified that he intended to rehire Payne on the same terms as his previous employment, the issue apparently was never discussed by the parties. The evidence is insufficient to support a conclusion that the 1971 agreement was revived by Payne's reemployment. However, even without an express agreement, we find that Payne was obliged to assign to White's inventions created during his employment. Payne was hired precisely because of his exceptional inventive abilities in the metal detector field. His duties were to invent and develop improvements in White's product line. This, in conjunction with Payne's practice of assigning patents to White's, including during his last period of employment, convinces us that he had a duty to assign all inventions arising during his employment. Thus, the central issue in this case is whether Payne's target-identification concept was sufficiently developed at the time he left White's employ so as to constitute an "invention" to which White's is entitled. Because White's is seeking the imposition of a constructive trust, it must prove its case by strong, clear and convincing evidence. Pantano v. Obbiso, 283 Or. 83, 87, 580 P.2d 1026 (1978). We are unable to find any Oregon cases dealing directly with this issue. Both sides cites numerous cases from other jurisdictions in which the term "invention" has been defined under a variety of factual circumstances. Most courts have adopted a definition which requires that an invention be something more than a thought in an inventor's mind. As stated in National Development Co. v. Gray, 316 Mass. 240, 55 N.E.2d 783 (1944): "Of course there is a distinction between the conception of an idea and the reduction of the idea into practice. The idea is only the starting point, and it does not become an invention until it is developed and perfected and becomes embodied in some tangible form which becomes some novel and useful device or process." 316 Mass. at 249, 55 N.E.2d 783. In Gray, on which plaintiff places great reliance, defendant Lawson, an employe of a company that manufactured shoe-heeling machinery, conceived of an idea for an improved model of that kind of machine while he was in that company's employ. Before he quit, he had reduced his idea to a drawing. The court ruled that, even though he had not yet constructed a working model of the machine, "* * * the idea had crystallized into such definite form by the time Lawson left the plaintiff's employment that he and those with whom he spoke concerning the new machine knew in a general way the principles governing its operation and its probable practical value. * * "It is plain from the evidence * * * that the drawing was the nucleus from which the machine emerged; that whatever Lawson accomplished up to the time he quit belonged to plaintiff, * * * that the activity of Lawson in reference to the new machine constituted a breach of his contract with the plaintiff; and that the latter was entitled to the patent." 316 Mass. at 250, 55 N.E.2d 783. We find the National Development Co. analysis helpful, but we reach a different result as an evidentiary matter. In our view, the evidence in the present case is not clear and convincing that the unsuccessful breadboard Payne assembled prior to his leaving White's employ was the "nucleus" *72 from which his target-identification concept emerged. We are not convinced that, at the time Payne left White's, his idea had "crystallized into a definite form." In fact, one of the key elements of the idea was not developed until after his resignation. When Payne left White's he left with an idea and a goal, but not with an invention. White's, therefore, is not entitled to a constructive trust or to assignment of the patent. White's argues that such a holding will encourage employed inventors deliberately to refrain from putting ideas into tangible form in order to circumvent employer's rights. Our response is that employers could protect themselves by requiring inventors to enter into contracts that provide that the employer is entitled to any inventions conceived during the term of employment and during a reasonable period of time after termination. In fact, White's required Payne to sign such an agreement during his first period of employment. Its failure to obtain such an agreement the second time around is fatal to its case. White's contends in the alternative that it is entitled to a "shop-right" in Payne's target-identification concept. A "shop-right" is a non-assignable license to a patent granted to an employer when an employe who works in a general or noninventive capacity creates an invention using the employer's time and materials. Mainland Industries v. Timberland Mach. & Eng., supra, 58 Or. App. at 593, 649 P.2d 613. Payne, however, was hired specifically as an engineer whose duties included inventing and developing improvements in White's product line. Thus, the facts do not warrant the application of the "shop-right" doctrine. White's final contention is that it is entitled to a permanent injunction to prevent defendants from using trade secrets, propriety knowhow or confidential information acquired from White's. Our review of the record does not reveal any evidence to support the granting of such an injunction. Affirmed.
  12. Maybe this is a dumb question wit regard to PI machines why is that one machine will excel at small nuggets but can't do so well on bigger nuggets., Doesn't make sense to me. It would seem logical that iit can find small stuff big stuff should be easy?
  13. Minelab Equinox will not be the detector of the year for ever. What will be next?
  14. The ads came from mags dating back to 66. I can say I remember them all. Just maybe you remember some if not all. Chuck
  15. Hi Steve: Just re-read your "Steve's Guide to Threshold, Autotune..." It helped a lot. Thanks. I do have a question though. I understand V/SAT. It's about how fast autotune re-adjusts the threshold after encountering some disturbance like a target. However, I'm unclear on how that relates to Ground Balancing and Tracking. It sounds like they are the same. Would you please explain that? Thanks
  16. If you read between the lines on the various search modes, Minelab seems to imply that the ground balancing is done automagically, regardless of whether you do a ground grab or not. For example: Park 1 Multi-IQ processes a lower frequency weighting of the multi-frequency signal, as well as using algorithms that maximise ground balancing for soil, to achieve the best signal to noise ratio. Hence Park 1 is most suited for general detecting and coin hunting. Park 2 Multi-IQ processes a higher frequency weighted multi-frequency signal while ground balancing for soil. Field 1 Multi-IQ processes a lower frequency weighted multi-frequency signal, as well as using algorithms that maximise ground balancing for soil, to achieve the best signal to noise ratio. Hence being most suited for general detecting and coin hunting. Field 2 Multi-IQ processes a higher frequency weighted multifrequency signal while ground balancing for soil. Beach 1 Multi-IQ processes a low frequency weighted multi-frequency signal, and uses special algorithms to maximise ground balancing for salt. Beach 2 MultiIQ processes a very low weighted multi-frequency combination, using the same algorithms as Beach 1 to maximise ground balancing for salt. Not to be confused with auto tracking, but it appears that the Equinox is doing some ground balancing specific to each search mode irregardless of whether you do a ground grab (auto ground balance in EQ speak) or not. Not that I would skip doing a ground grab, but I find it interesting that Minelab seems to be implying they process the ground balancing differently for each search mode, even if you don't do it. Steve do you see this as the case?
  17. What are some of the least expensive pi machines? Can used ones be found?
  18. Hello , It would be great if the youtubers like calabash and others who have lot of followers make a video of that to share at maximum . - Take 12-15 differents coins of your country ( the coins you use all the day ) -Make a pile (heap ?) with that coins ,like a little tower -Keep this pile beetween your thumb and other finger . -Swing that in front of the coil , at 3-4 inches , the side of the coins ! -Now try that with all the detect mode , not need to change factory presets ( maybe only the accept to 0,1,2 in field 2 ) , you are free to try differents settings later . -The only and important setting for the moment is to change frequency , try 5,10,15,20,40 and multi in each detect mode . Of course multi in the two beach and 20,40,mutli in gold . What is happening ? I know the results , but i want to know the result of the coins of USA,England, australia ,canada .... So please share your results in comments or video Make that with different detectors , if you have impact or deus or other who have various frequency , try to switch all frequency . You can try that with HF white coil if you have , but .... The conclusion is multi IQ obsolete the others single freq . It is more or less to say what calabash said in his video . We can debate of that .
  19. Hi steve Herschbach Sir Hope you are good Sir i want to buy metal detector that can detect upto 15 feet I belong to pakistan Here the soil is mineralized Some people suggested me GPZ 7000 Some suggested the jeo hunter 3d dual pack (made in turkey) I have also searched the BR Royal Analyzer Basic which is launched recently in 2017 Sir i want the best detector thats why i need your help Pls suggest me the best detector . Waiting for your reply Sir
  20. When Minelab offered the statement that the new Equinox would obsolete single frequency VLF detectors there was a hue and cry of disbelief from a group of end users. Yet the manufacturers, even before the first Equinox was available for retail sale confirmed that statement by lowering prices. There were two aspects of the statement issued by Minelab that seems to have been missed by some end users: 1. The statement was 90% aimed at other manufacturers. 2. The statement was forward looking at the economic viability of future production of single frequency VLF’s. Now an end user may think that the Acme 4000 was the greatest relic detector ever made and cannot be displaced by an Equinox. However if the sales numbers fall to a certain point then the Acme 4000 will end up being discontinued. So even if an end user loves and is totally invested in an Acme 4000 there is no guarantee it will survive the sales onslaught of the Equinox. To those who say “hogwash” then may I ask how many new recent model BFO or T/R detectors do you see being for sale by manufacturers? Why aren’t there any? Because Technology moved on, just the same as is occurring with the Equinox. Tough time to be a product or sales manager at a competing metal detector company!
  21. Lots of good stuff here to chew on! From https://www.minelab.com/anz/go-minelabbing/treasure-talk/equinox-technologies-part-4 EQUINOX Technologies (Part 4) March 20, 2018 10:05am Minelab Electronics This is the fourth installment in a blog series introducing and explaining the technologies inside our new EQUINOX detectors… (Read Parts 1-3 here.) In Part 3 we ended with mentioning the different Multi-IQ “frequency weightings” for the different search profiles. Part 4 explains further why it is not a simple matter of just referring to specific individual frequencies for learning more about Multi-IQ technology. Let’s now consider one of the key practical detecting outcomes and then discuss how this was achieved… “A lot of people are going to be surprised at how well the machine works in saltwater. At the outset we weren’t sure whether reliably detecting micro-jewelry in a conductive medium was even possible, but – with the help of our field testers and the subsequent fine-tuning of the Multi-IQ algorithms – we’ve found the EQUINOX to be more than capable.”Dr Philip Wahrlich Background and considerations While Multi-IQ may appear as ‘magic’ to some, to our team of signal processing experts, it’s the result of a significant number of man-years of development. So where did they start? By assessing the metal detectors and technologies available in the market at that time, along with typical customer perceptions about their practical applications; and actual detecting results achieved: So, an important goal with developing Multi-IQ technology was to retain the above simultaneous multi-frequency advantages AND greatly improve performance in the two key areas where many single-frequency detectors typically excel – fast recovery in iron trash and finding low conductors in all conditions. Speeding up the process Most comparable low-power Continuous Wave transmit-receive detectors (for the same coil size) will have a similar raw detection depth at which the transmit signal penetrates the ground and has the potential to energize a target. To increase detection depth significantly typically requires higher power and Pulse Induction technology. This has advantages for gold prospecting, but discrimination is poor for identifying non-ferrous targets. While we continue to push for depth improvements, Multi-IQ also aims to provide substantial speed improvements, resulting in being able to better find ALL non-ferrous targets among trash in ALL locations. You could therefore say “fast is the new deep, when it comes to EQUINOX!” Let’s start with considering signal processing not as a ‘black box’ where ‘magic’ happens, but more as a complex chain of applied algorithms, where the goal is to more accurately distinguish very small good target signals from ground noise, EMI and iron trash. Now, ‘fast’ by itself is not enough – you can have fast with poor noise rejection and poor target identification, giving no great advantage. Fast is also not just a result of microprocessor speed. Processors operate at much higher speed than is needed to ‘do the signal processing math’. You can think of the signal processing chain broadly as a set of filters and other processes which are applied to the metal detector signals to convert these signals into useable, informative indicators, such as an audio alert or a target ID. For Multi-IQ, keeping the ‘good’ properties of these filters, while keeping them lean and removing unnecessary processing, was an important step towards achieving ‘fast’ for EQUINOX. It’s also important to recognize that these filters are not the coarse filters of the analogue electronics hardware of last century – it all happens in software these days. Perhaps think of the older analogue TV standards versus current digital TV. (Standard digital HDTV has approx. 10 times the resolution of analogue NTSC.) With metal detectors, a fast higher resolution filter set will result in improved target recognition. Factoring in the ground conditions However, speed without accuracy is not enough to produce a “game changer” detector – and improved accuracy cannot be achieved with a single frequency alone. Why? – “multi-frequency has more data-points” Philip Beck, Engineering Manager. This is worth explaining in more detail… All transmit-receive detectors produce in-phase (I) and quadrature (Q) signals that can be processed in various ways depending upon the response received from targets, ground and salt. This processing happens through ‘channels’ that have different sensitivities to the different signals received. It is important to recognize that channels are not exactly frequencies. This is why it is more complex to explain than just correlating optimum frequencies to specific target types. With a single frequency detector there are two basic channels for information (i.e. I and Q) that respond differently to good and bad signals, depending upon the frequency of operation and whether you are looking the the I or Q signal. It is also possible to scale and subtract these signals, while taking ground balance into account, to best maximize good signals and minimize bad signals. You could thus think of single-frequency being Single-IQ, with a limited set of data (e.g. I, Q, I-Q, Q-I) that works well for a particular set of conditions. To further enhance performance for a different set of conditions, you need to change frequency and detect over the same ground again. Therefore a selectable single frequency detector has an advantage with more data available, but not all at once (e.g. I1, Q1, I1-Q1, Q1-I1 OR I2, Q2, I2-Q2, Q2-I2 for as many frequencies that you can select from). Now, getting back to Philip Beck’s “more data-points”, and just looking at two frequencies, a simultaneous multi-frequency detector would be able to process (for example) I1, Q1, I1-Q1, Q1-I1 AND I2, Q2, I2-Q2, Q2-I2 AND I1-Q2, Q2-I1, I2-Q1, Q1-I2 to give better detection results. Increase the number of frequencies further and the number of extra data-points also increases accordingly. What Multi-IQ does is process different optimized channels of information (not just individual frequencies) for the different modes. We have previously explained this as “frequency weighting” (in Part 3), where the various EQUINOX Search Profiles are matched to the respective ground conditions and target types. Here is a very simplified example where you can see the result of processing more than a single channel of information (remember, a channel is not a frequency): Channel 1 has a strong target signal, but the salt signal is stronger still. Channel 2 has weaker signals for soil, salt and the target. If the detector just responded to either Channel 1 or Channel 2, the target would not be heard through the ground noise. If the detector processes a subtraction of the channels (e.g. ch.1-ch.2), then it is possible to ignore the ground noise and extract a strong target signal. Now, think back to the high number of possible combinations of I and Q for simultaneous multi-frequency compared to single-frequency and the frequency weightings for the modes. All of the EQUINOX Park, Field, Beach and Gold Search Profiles have dedicated signal processing to best suit the conditions and types of targets being searched for. Conclusion Multi-IQ = more data-points = sophisticated processing = better ground noise rejection = more finds Just as targets are more sensitive to certain frequencies, so is the ground – an important reason why air testing has inherent limitations when comparing detector performance. As soon as you have ground to consider in the signal processing equation, it can greatly impact on the ability of a single-frequency detector to accurately identify a target. Also, the deeper a target is buried, the weaker the target signal is, relative to the ground signal. The most difficult ground response to eliminate is the salt response, which varies greatly between soil, dry sand, wet sand and seawater. It is not possible to eliminate the salt response and the soil mineralization response (e.g. black sand) with just one frequency. However, within the carefully calibrated Multi-IQ channels, EQUINOX is able to identify both signals and therefore mostly ‘reject’ them (just as you would notch discriminate an unwanted target) BUT still detect gold micro-jewelry. If you haven’t tried EQUINOX yet – why not give it go – with Multi-IQ being fast AND accurate, those diminishing and elusive targets are running out of places to hide! (Part 5 to follow…)
  22. The World's First Smart Detector & Imaging System that can display the shape, depth and dimensions of underground metals in real time. Ideal for Deep Treasure Hunters, Archaeologists, Municipalities, Utility Companies, CSI and Law Enforcement Agencies. http://noktadetectors.com/invenio-metal-detector.asp
  23. Hello everyone, I am new here to this forum. Recently my home town at my home country, prospectors started to discover Gold nuggets in large sizes at the surface without digging it, see the attached email The creek and valleys are so large that you can not cover by using a handheld detectors. I did some search and came across two other types. One is using a drone metal detector although the product is not out yet https://www.treasurehunter3d.com/dronerover and the other is long distance detectors upto 2km and 30 meters deep http://www.megalocators.com/en/ or http://www.imagelocators.com/index.php/component/virtuemart/long-range-locators/x-finder-gold-detector-long-range-locator-detail?Itemid=0 video is https://youtu.be/kv6EmzH34Ao I couldn't find review on the performance on the long range detectors, did any of you use it? or whether these are legit products that work? Thank you
  • Create New...